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A classical model for de transport of two dimensional electrons in a perpendic-
ular magnetic field and under strong irradiation is considered. We demonstrate
that, near the cyclotron resonance condition, and for linear polarization of the
ac field, a strong change of the diagonal component, o,, of the dc conductiv-
ity occurs in the presence of a weak nonparabolicity of the electron spectrum.
Small change in the electron effective mass due to irradiation can lead to neg-
ative o4, while the Hall component of the dc conductivity remains practically
unchanged. Within the model considered, the sign of o, depends on the rel-
ative orientation of the dc and ac fields, the sign of the detuning of the ac
frequency from the cyclotron resonance, and the sign of nonparabolic term in
the energy spectrum. We also demonstrate that the known phenomenon of the
nonparabolicity-induced hysteresis in the cyclotron absorption manifests itself
in the dc transport by causing a hysteresis in the magnetic field dependence of
Od-

1. Introduction. Recently reported observation [1,2] of a zero-resistance state, that emerges upon
microwave irradiation of a high-mobility 2D electron gas in a weak magnetic field, was immediately
followed by a number of theoretical papers [3-6], in which the origin of this state was discussed.
The only microscopic calculation to date [4] indicates that, for strong enough radiation intensity,
the diagonal component, o4, of the dec conductivity tensor changes sign from the dark value o, > 0
to 04 < 0 within certain frequency intervals of the ac field, away from the cyclotron frequency
and its harmonics. Negative local value of o, results in the instability of the homogeneous current
distribution. In Ref. [5] the scenario of how the instability might develop into the zero-resistance
state was proposed.

In this situation it seems important to trace the emergence of negative o4 in an ac-driven system
from the simplest possible model. Such a model is considered in the present paper. Obviously, o4
is sensitive to the illumination only if the Kohn theorem is violated. It is commonly assumed that
the reason for this violation is a random impurity potential. Here we consider a model, in which the
Kohn theorem is violated due to an intrinsic reason, namely, due to a weak nonparabolicity of the
electron spectrum. More specifically, we adopt the following form of the dispersion relation for the
conduction band electrons
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where m is the effective mass, and Ej is the energy of the order of the bandgap. The corresponding
expression for the velocity reads
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2. dc conductivity. As we will see below, negative o4 emerges when the ac field, £ coswt, is linearly
polarized. We choose the direction of polarization along the z-axis. We will also see that the



magnitude and the sign of o4 depend on the direction of the driving de field, E (Fig. 1). Denote
with € the direction of E with respect to the x—axis. Then the classical equation of motion of an
electron in a perpendicular magnetic field B and driven by ac and dc fields is
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where 7 is the relaxation time. It is convenient to rewrite this equation introducing a complex
variable P = p, + ip,. Then it takes the form
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Here w, = |e|B/mc is the cyclotron frequency. We search for a solution of Eq. (4) in the form

P(t) = Po + Py exp(iwt) + P_ exp(—iwt), (5)

where Py < P,,P_ is a small de component proportional to E. Near the cyclotron resonance
condition, w &~ w,, we have |P_| < |P4|. Still we keep the nonresonant term, P_, to the lowest
order, since the ac field affects o4 through this term. In other words, the effect of irradiation on o,
emerges beyond the rotating-wave approximation, adopted in Ref. [4]. Substituting Eq. (5) into Eq.
(4), we obtain the following system of equations for P,, P_, and Py.
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The ac-induced term o [P |? in the equation for Py describes the change of the effective mass caused
by irradiation, and has no effect on the dc transport. The effect comes from the term oc P, P_, which
describes the “rectification” of the Larmour motion due to nonparabolicity.
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FIG. 1. The diagonal conductivity as a function of the angle 6 between ac and dc electric fields, illustrated in the inset.
The dashed line shows the dark conductivity. The solid curve is a plot of the diagonal conductivity under irradiation given by
Eq. (14). It assumes negative values within the angular intervals shown with gray.



From Eq. (7) we obtain P_ = ie€ /4w.. The solution of Eq. (6) can be formally presented in the
form
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is the deviation of the microwave frequency from the ac-shifted cyclotron frequency. Substituting
P, P_ into Eq. (8), we find the longitudinal, p|, and transverse, p,, with respect to the applied dc
field, components of the drift momentum
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The expressions for the diagonal, o4, and transverse, o;, conductivities immediately follow from Eqs.
(11), (12). It is convenient to rewrite these expressions using the dimensionless parameter dm/m,
which is the relative correction to the effective mass due to irradiation
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The above consideration is valid when dm/m < 1. Then we obtain
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where n is the electron concentration. We see that the ac-induced correction to the transverse
conductivity is small, since we assumed that || < w, and 0m/m < 1. The latter condition allows
us to use the expansion of £(p) given by Eq. (1), i.e., to neglect the higher—order, in £/ Ey, terms in the
kinetic energy. Our prime observation, however, is that with dm/m < 1, the diagonal conductivity,
given by Eq. (14), becomes negative for large enough detuning from the cyclotron resonance. The
corresponding condition for negative o; can be presented as
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In the clean limit, w.7 > 1, this condition is compatible with || < w. and dm/m < 1. The ratio
dm/m increases with the intensity of the ac field. Therefore, in order to meet the condition (16),
microwave irradiation should exceed a critical value. For the intensities above this critical value the
diagonal conductivity assumes negative values within certain intervals of relative orientation, f, as
illustrated in Fig. 1.



It is instructive to analyze the above expressions for diagonal and transverse conductivities in the
limit 7 — oo, where they can be simplified to
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Remarkably, the relaxation time, 7, drops out not only from o, but also from the diagonal conductiv-
ity. This means that the the momentum relaxation, necessary for dissipative transport, is provided
by scattering from the microwave field, coupled to the translational motion via the nonparabolic
term in the dispersion relation.

As it is seen from Eq. (17), the dissipation is the odd function of the detuning, €2, from the cyclotron
resonance. Within the interval 0 < § < 7/4 it is negative for w > w. and positive for w < w,.

3. Bistability. In general, o4 in Eq. (17) is not simply proportional to the intensity of the ac field.
This is because the effective detuning, €2, also depends on &, as follows from Eq. (10). Below we
analyze the Q (£) dependence. For this purpose, we rewrite Eq. (9) in the form
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Upon introducing new dimensionless variables
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this equation takes the form
n
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Diagonal conductivity can be expressed through a solution of this equation as follows
1
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where o, = ne?/mw, is the transverse conductivity. Remarkably, Eq. (21) yields three solutions for
§ < 0 and n/|§]> < 4/27. Two of these solutions are stable. As a result, the nonparabolicity Eq.
(1) in the dispersion law of the conduction band leads to the hysteresis in the cyclotron absorption.
This fact was first pointed out in Ref. [7]. Later it was noticed in Ref. [8] that the hysteresis in
the cyclotron absorption is actually possible for a free electron due to relativistic correction to its
velocity. The role of 7 in Ref. [8] is played by the radiative friction. This prediction was confirmed
experimentally in Ref. [9].

The aspect of nonlinear cyclotron resonance [7,8], which is interesting to us, is how the bistability
manifests itself in the diagonal conductivity, when polarization of the ac field is linear. Two stable
solutions of Eq. (21) can be obtained analytically in the limit n < |§]3
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It is seen from Eq. (22) that they result in two values of diagonal conductivity
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g, (oF Sin g (oF Sin .
dl t2| 5| I d2 2 t 77

This result is obtained in the limit of infinite 7. Analysis with finite 7 indicates that as long as the
condition dm/m < 1 is met, the phenomenon of negative diagonal conductivity vanishes for the
second solution, while o4 remains unaffected. On the other hand, kinetic energies of these states
are
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Note, that the condition n < |d|* insures that ¢y < €3. Our findings can be thus summarized
as follows: negative o, corresponds to the lower—energy state, while in the higher—energy state the
diagonal conductivity remains positive. Hence, within the model considered in the present paper, the
phenomena resulting from negative diagonal conductivity should vanish at high enough temperature
due to activation to the state with positive o,.

4. Concluding remarks. We would like to emphasize that the effect of irradiation on dc transport
emerges within our model only for linear (more precisely, not circular) polarization of the ac field.
As a result, the ac-induced contribution depends on the relative orientation of the dec field and
ac—polarization.

As the intensity of irradiation increases, the diagonal conductivity first becomes zero at certain
orientation, f#, which depends on the detuning from the cyclotron resonance. Upon further growth of
the microwave intensity, the interval of # within which o, is negative, becomes increasingly wider. We
also emphasize that, within our simple model, a significant change in the dissipative conductivity with
irradiation occurs only for the ac frequency near the cyclotron resonance. Experimentally observed
oscillations of o4 in the vicinity of the harmonics of the cyclotron resonance are not captured by our
model.

Uncertainty in the experimental parameters does not allow a detailed comparison of our model to
the experiments [1,2]. We can only roughly estimate the crucial parameter (e£7)?/mFE,, which should
me compared to (w.7)~" in order to achieve the negative value of one of the diagonal components of
the condictivity tensor. Using the value 100uWV for the microwave power from Ref. [2], and sample
area 102cm?, we find for the microwave electric field £ ~ 1V/cm. Note, that the ac field was
linearly polarized in both Refs. [1] and [2]. For the experimental mobility 4 = 2.5-107cm?/V sec and
for nonparabolicity parameter Fy = 1eV, we obtain for the dimensionless combination (e£7)?/mEq
the value of 0.03, which is quite reasonable, since (w.7) is ~ 50 in Ref. [2]. The estimate turns out
reasonable because the smallness of nonparabolicity in GaAs is ”compensated” by the long scattering
time in very high mobility samples studied in Refs. [1,2].

Finally, we would like to illustrate with a numerical example how the hysteresis in the the cy-
clotron absorption line [7,8] translates into the hysteresis in the magnetic field dependence of the de
conductivity. In Fig. 2a the dimensionless kinetic energy 2z = |P,|?/mEy of the ac driven electron
is plotted vs. the dimensionless detuning from the cyclotron resonance condition. The dependence
is calculated for the dimensionless intensity 7 = 2 - 1073 of the ac field, defined by Eq. (20), and
for w,m = 30. In Fig. 2b the corresponding dependence of the dc conductivity (in the units of the
“dark” value ') = ne?/mw?r) is is shown for the orientation 6 = 7/4. It is seen that the jump
between the low-energy and the high-energy states of the Larmour rotation is accompanied by the
change of the sign of the dc conductivity.



0.5f

0.4 .

0.3t .

0.2' 0'

0.1f

-1

0 0.5
(o)c—o))/o)c
FIG. 2. Hysteresis in the dimensionless kinetic energy (a) and the dimensionless dc conductivity (b) is illustrated for w.m = 30,
dimensionless intensity n = 2 - 1072, and orientation 6 = 7/4, of the ac field.
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